The practicalities of fast run and gun shooting with a large sensor camera.

Supercell-panoramaWell I’ve just returned home from NAB and a week of Tornado Chasing in the USA. For the Tornado chasing I was shooting in 4K using my Sony F5. I’ve shot run and gun with my F3 and FS700 in the past when shooting air-shows and similar events. But this was very different. Tornado chasing is potentially dangerous. You often only have seconds  to grab a shot which involves leaping out of a car, quickly setting up a tripod and camera and then framing and exposing the shot. You often only have time for one 30 second shot before you have to jump back into the car and move on out ahead of the storm. All of this my be happening in very strong winds and rain. The storms I chased last week had inflow winds rushing into them at 50+ MPH.

The key to shooting any thing fast moving, like this, is having whatever camera kit your using well configured. You need to be able to find the crucial controls for exposure and focus quickly and easily. You need to have a way of measuring and judging exposure and focus accurately. In addition you need a zoom lens that will allow you to get the kinds of shots you need, there’s no time to swap lenses!

For my storm chasing shoot I used the Sony F5 with R5 recorder. This was fitted with a Micron bridge plate as well as a Micron top cheese plate and “Manhandle”. Instead of the Sony viewfinder I used an Alphatron viewfinder as this has a waveform display for exposure. My general purpose lens was a Sigma 18-200mm f3.5-f6.5 stabilised lens with a Canon mount. To control the iris I used a MTF Effect iris control box. For weather protection a CamRade F5/F55 Wetsuit. The tripod I used for this shoot was a Miller 15 head with a set of Carbon Fibre Solo legs.

Storm chasing with a PMW-F5
Storm chasing with a PMW-F5

Overall I was pleased with the way this setup worked. The F5’s ergonomics really help as the logical layout makes it simple to use. The 18-200mm lens is OK. I wish it was faster for shooting in low light but for the daytime and dusk shots, f3.5 (at the wide end) is OK. The F5 is so sensitive that it copes well even with this slow lens. The CamRade wetsuit is excellent. Plenty of clear windows so you can see the camera controls and a well tailored yet loose fit that allows you to get easy access to the camera controls. I’ve used Miller Solo legs before and when you need portability they can’t be beaten. The are not quite as stable as twin tube legged tripods, but for this role they are an excellent fit. The Miller 15 head was also just right. Not too big and bulky, not too small. The fluid motion of the head is really smooth.

Storm Chasing in the USA with the PMW-F5
Storm Chasing in the USA with the PMW-F5

So what didn’t work? Well I used the Element Technica Micron bridge plate. I really like the Micron bridge plate as it allows you to re-balance the camera on the tripod very quickly. But it’s not really designed for quick release, it’s a little tricky to line up the bridge plate with the dovetail so I ended up removing and re-fitting the camera via the tripod plate which again is not ideal. The Micron Bridge plate is not really designed for this type of application, when I go back storm chasing in May I’ll be using a  baseplate that locks into a VCT-14 quick release plate, not sure which one yet, so I have some investigating to do.  The VCT-14 is not nearly as stable or as solid as the Micron, but for this application speed is of the essence and I’m prepared to sacrifice a little bit of stability. The Micron bridge plate is better suited to film style shooting and in that role is fantastic, it’s just not the right tool for this job.

Rainbow under a severe thunderstorm.
Rainbow under a severe thunderstorm.

The MTF-Effect unit is needed to control the aperture of the Canon mount lens, it also powers the optical image stabiliser. But it’s a large square box. I had it mounted on the top of the camera, not in the best place. I need to look at where to mount the box. I’m actually considering re-housing the unit in a custom made hand grip so I can use it to hold the camera with my left hand and have iris control via a thumbwheel. I also want to power it from one of the camera’s auxiliary outputs rather than using the AA batteries internally. The other option is the more expensive Optitek lens mount which I’m hoping to try out soon.  I’m also getting a different lens. The Sigma was fine, but I’m going to get a Sigma 18-250mm (15x) f3.5-f6.5 for a bit more telephoto reach. The other option I could have used is my MTF B4 adapter and a 2/3″ broadcast zoom, but for 4K the Tamron will have better resolution than an HD lens. If I was just shooting HD then the broadcast lens would probably be the best option. After dark I swapped to my Sigma 24-70mm f2.8 for general purpose shooting and this worked well in low light but with the loss of telephoto reach, I need to look into a fast long lens but these tend to be expensive. If you have deep enough pockets the lens to get would probably be the Fujinon Cabrio 19-90 T2.9, but sadly at the moment my budget is blown and my pockets are just not that deep. The Cabrio is very similar to an ENG broadcast lens in that it has a servo zoom, but it’s PL mount and very high resolution. Another lens option would be the Canon CN-E30-105mm T2.8, but overall there isn’t a great deal of choice when it comes down to getting a big zoom range and large aperture at the same time, in a hand-held package. If I was working with a full crew then I would consider using a much larger lens like the Arri Alura 18-80 or Angenieux Optimo 24-290, but then this is no longer what I would consider run and gun and would require an assistant to set up the tripod while I bring out the camera.

A Supercell thunderstorm looking like a flying saucer.
A Supercell thunderstorm looking like a flying saucer.

From an operating point of view one thing I had to do was to keep reminding myself to double check focus. If you think focus is critical in HD, then it’s super critical for 4K. Thunderstorms are horrid things to try and focus on as they are low contrast and soft looking. I had to use a lot of peaking as well as the 1:1 pixel function of the Alphatron viewfinder, one of the neat things about the Alphatron is that peaking continues to work even in the 1:1 zoom mode. As I was shooting raw and using the cameras Cine EI mode to make exposure simpler I turned on the Look Up Tables on the HDSDI outputs and used the P1 LUT. I then exposed using the waveform monitor keeping my highlights (for example the brighter clouds) at or lower than 100%. On checking the raw footage back this looks to have worked well. Quite a few shots needed grading down by 1 to 1.5 stops, but this is not an issue as there is so much dynamic range that the highlights are still fine and you get a cleaner, less noisy image. When shooting raw with the F5 and F55 cameras I’d rather grade down than up. These cameras behave much more like  film cameras due to the massive dynamic range and raw recording, so a little bit of overexposure doesn’t hurt the images as it would when shooting with standard gammas or even log. Grading down (bringing levels down) results in lower noise and a cleaner image.

Frame grab from the F5 of a Supercell storm with a grey funnel cloud beneath.
Frame grab from the F5 of a Supercell storm with a grey funnel cloud beneath.

So you can run and gun in an intense fast moving environment with a large sensor camera. It’s not as easy as with a 2/3″ or 1/2″ camera. You have to take a little more time double checking your focus. The F5 is so sensitive that using a F3.5-F6.5 lens is not a huge  problem. A typical 1/2″ camera (EX1, PMW-200) is rated at about 300 ISO and has an f1.8 lens. The F5 in Cine EI mode is 2000 ISO, almost 3 stops more sensitive. So when you put an f3.5 lens on, the F5 ends up performing better in low light, even at f6.5 it’s only effectively one stop less sensitive. For this kind of subject matter you don’t want to be at f1.8 – f2.8 with a super 35mm sensor anyway as the storm scenes and shots involved work better with a deep focus range rather than a shallow one.

Having watched the footage from the shoot back in HD on a large screen monitor I am delighted with the quality of the footage. Even in HD it has better clarity than I have seen in any of my previous storm footage. This is I believe down to the use of a 4K sensor and the very low noise levels. I’d love to see the 4K material on a 4K monitor. It certainly looks good on my Mac’s retina display. Hopefully I’ll get back out on the plains and prairies of Tornado Alley later in May for some more storm chasing. Anyone want to join me?

 

Let the Storms Begin!

Tornado probabilities.
Tornado probabilities.

My facebook and twitter readers will already know that I’m in the USA doing a spot of storm chasing. The last few days have been a bit of a practice, chasing storms, jumping out of the car and getting the camera set up quickly (I’m shooting in 4K raw with the PMW-F5). I already have some really nice footage, but nothing spectacular yet, just some pretty scenic shots, some thunderstorms and a little bit of lightning. Today however looks to be a very interesting day. The Storm Prediction Center has issued a public advisory for severe weather including damaging winds, large hail and tornadoes. I’m right in the best place to catch some of the action and all set to go. However a tornado may only be 100m/100 yards across and the area where there is a 15% chance of tornadoes with 25 miles of a given point (a very high tornado probability) covers an area of about 50,000 square miles, that’s an area almost the size of the UK. So for the next couple of hours I will be looking at weather forecasting data and computer models trying to figure out exactly where to go.

There is a very serious risk of large and very violent tornadoes today across much of Oklahoma. The storms and tornadoes will be moving North East at about 25-35mph and possibly passing through some very heavily populated areas. In addition hail stones the size of tennis balls are expected along with straight line winds of up to 100 mph around some of the stronger storms. What’s going to cause all of this mayhem? Well the North of the US is currently sitting under some very cold winter air, it’s snowing about 300 miles north of here. Just to the south of me it’s hot, very hot and humid. High above strong jet stream winds are set to increase in strength today and dig down towards the south. As the jet stream digs south it will push that cold northern air south driving a cold front that will crash into the warm southern air. This cold front will push the warm air upwards and aided by the jet stream winds this creates atmospheric instability and lift that causes violent storms to break out along the front. The final ingredient is wind shear. Winds near the ground will be coming from the south towards the front while winds high above in the jet stream will be coming from the west. This will cause the stronger thunderstorms to start to spin and rotate which helps them to become much stronger turning them into “Supercells”. Supercell storms are responsible for almost all violent tornadoes.

So, wish me luck. Today will be a frantic and hectic day. Hopefully I’ll get some interesting 4K footage to share with you all very soon.

Canon online exposure tutorial and simulator. Great for beginners!

canon simulatorThis is a really neat online tutorial (http://www.canonoutsideofauto.ca) on exposure, aperture and shutter and how they work together to create different looks to a photo. There is also a clever simulation of what you pictures would look like if taken with different settings. This is great for kids, photography beginners or those that want to take better pictures but are not used to using manual modes.

 

Convergent Design Odyssey 7Q To Work With FS700 Raw!

Waveform and measurement options on the Convergent Design Odyssey7Q
Waveform and measurement options on the Convergent Design Odyssey7Q

Hot off the press from NAB is the announcement that the Convergent Design Odyssey 7Q will be able to work directly with the FS700 to record  4K and 2K with from the FS700 with 2K raw going up to 240fps. This is really great news. I’ll be posting a video blog about this later in the week. for now here is an extract from the official press release

LAS VEGAS, NAB Booth C11001, April 8, 2013 — Sony is announcing that its affordable 4K production camcorder, the NEX-FS700, will support a direct connection to Convergent Design’s new Odyssey7Q. The combination will allow recording of 2K RAW at up to 240 frames per second, with 4K video enabled via a single 3G connection.

The NEX-FS700 can achieve a high frame rate of up to 240 fps recording in 2K RAW while recording to the Odyssey 7Q. The 240 content fps is recording continuously, without windowing the imager or line doubling the signal. This assures full resolution at all times without windowing artifacts.
The direct connection to Convergent Design’s new Odyssey 7Q complements Sony’s own newly announced recording solution using the AXS-R5 RAW recorder and the new HXR-IFR5 interface unit. Now professional users have even more flexibility in choosing a workflow that meets their needs for today’s diverse client requirements.

“The addition of RAW and 4K recording unleashes the full power of the FS700’s state of the art 4K imager, vastly increasing the potential applications for the camcorder and resulting in tremendous flexibility in post-production,” said Peter Crithary, marketing manager for large sensor technology at Sony Electronics. “Now, interoperability with the exciting Odyssey 7Q in addition to our own recording technology gives users a wide range of cost effective choices when working with diverse workflows.”

The PMW-F5 and F55. Expose as you would film when using raw.

I have to say that the more I use my F5 the more I’m coming to love the images it produces. However it has taken a little while to really find the best way to expose it when shooting raw.
In order to record raw the camera has to be in the Cine EI mode which means that the internal recordings use S-Log2. S-Log2 uses lower black values than S-log and as a result looks less flat, even though it has greater dynamic range, so judging exposure is a little easier but still tricky, especially if your not used to the way log looks.
One issue at the moment is the lack of any built in waveform, histogram or spot meter, these should come with a later firmware update. In the mean time there are several things you can do. You can use an external monitor with a waveform display (I use the Alphatron EVF which now has a waveform display). You can use a light meter or you can use one of the built in LUT’s and then use zebras as you would normally. If using the LUT’s please remember that at the moment when the LUT’s are ON not only is the LUT applied to the HDSDI and HDMI outputs, but it is also applied to the internal recordings, so you are no longer recording S-Log2. Sony define Middle grey for s-Log2 as 32% and when exposed like this the images do look quite under exposed but do grade very well. The issue is that while this is great for Log where you do need to try to keep skin tones and the mid ranges in the lower more linear part of the gamma curve it’s not ideal for raw. This is because the raw is linear raw. There is no highlight or mid range compression as with standard gammas or log, so where you put middle grey is much less important as skin tones and mid tones will grade equally well even if exposed very high.
By deliberately over exposing the raw you can minimise noise and the F5/F55 raw is incredibly tolerant of over exposure. So the camera behaves much like a film camera when shooting raw and IMHO often benefits from exposing brighter with raw than the S-Log optimum. So a waveform display that allows you to see where your highlights are helps judging raw exposure much better than just sticking mid grey at 32%. When you shoot with the majority of video cameras you are always conscious of protecting your highlights because over exposure looks really bad and makes grading a nightmare. With most cameras the limited dynamic range and the way traditional gamma curves compress the highlights means that many of us camera operators and DP’s will deliberately slightly under expose when shooting video.
But when you shoot linear raw and have 14 stops of dynamic range to play with it really is very different. There is so much over exposure headroom that you are hard pushed to over expose the camera anyway. Because each stop contains the full amount of data it really doesn’t matter where you place your exposure range. Provided the brightest parts of your scene are not actually clipping you can afford to push your exposure levels up. There really is no need to underexpose. Exposing brighter brings an added benefit and that is that after grading you will end up with less noise than a scene exposed darker. So for the F5 and F55 when shooting raw (just as with the F65) I favour exposing on the brighter side and this is how you would work with a film camera. Film doesn’t like under exposure, under expose film and it gets noisy and grainy, just like underexposing raw with an F5/F55.
When shooting raw I prefer not to use a LUT and use a waveform display to keep an eye on my highlights. I will typically expose S-Log2 so that my highlights sit just below 100%. Very often the log will look a little over exposed (but the raw will be fine). If use a grey card and set middle grey to the recommended 32%, very often this will result in a darker exposure than I will actually use for shooting raw. This does mean that the S-Log2 footage may not grade as well as it should being a bit over exposed, but the raw looks fantastic and I can minimise noise levels by shooting this way.

Sony PMW-F55 raw samples for download.

I have uploaded a couple of short F55 raw sample for you to play with. The exposure was deliberately pushed to it’s limits on these clips so you can have a go at grading them. Resolve Lite (free) can be used with the footage.
http://www.alisterchapman.com/samples/f55-raw-samples.zip

If you find the footage useful please make a small donation to go towards the cost of hosting the files or buy me a coffee. All donations no matter how small gratefully received.

 

DSM-U84 Direct replacement battery for PMW-200, EX1, F3 etc tried and tested.

DSM-U84 battery in use on my PMW-F3
DSM-U84 battery in use on my PMW-F3

I received a sample DSM-U84 battery just before the weekend for testing and review. This battery is a direct replacement for the Sony BP-U60 type battery typically used on the smaller Sony PMW cameras like the PMW-150, 200, EX1, EX3 and F3. It docks directly with the camera and does not need to use a cable or any other adapter to power the camera. This is particulary significant for PMW-100, 150 and 200 users as the cameras power socket is located inside the battery compartment making it impossible to use an external power source when a battery is inserted.

The capacity of the DSM-U84 is 84Wh so about 20% more capacity than the BP-U60 but in the same sized package. In my tests this did equate to around 20% more run time on my F3, about 3 to 3.5 hours which I think is pretty good. Like the original Sony battery it has an LED capacity meter on the rear of the pack and the quality of the plastics used appears very good. The battery uses high quality Japanese sourced Panasonic cells so should give a long service life. You can charge it using the standard Sony charger. With an estimated list price of £130 + VAT this makes it a serious alternative to the Sony BPU-60 which is typically around £170.00.

Another view of the DSM-U84 on my F3 rig.
Another view of the DSM-U84 on my F3 rig.

One point to note is that the DSM-U84 does not feature a D-Tap socket like some of the other 3rd party batteries on the market. According to DSM this is stipulated by the cell manufacturer for safety reasons. I’ve used many DSM batteries over the years and they have always lasted very well, I have some that are now at least 6 years old but still perfectly useable.

To shoot flat or not to shoot flat?

There is a lot of hype around shooting flat. Shooting flat has become a fashionable way to shoot and many individuals and companies have released camera settings said to provide the flattest images or to maximise the camera dynamic range. Don’t get me wrong, I’m not saying that shooting flat is necessarily wrong or that you shouldn’t shoot flat, but you do need to understand the compromises that can result from shooting flat.

First of all what is meant by shooting flat? The term comes from the fact that images shot flat look, err, well…. flat when viewed on a standard TV or monitor. They have low contrast and may often look milky or washed out. Why is this? Well most TV’s and monitors only have a contrast range that is the equivalent of about 6 stops. (Even a state of the art OLED monitor only has a range of about 10 to 11 stops). The whole way we broadcast and distribute video is based on this 6 stop range. The majority of HD TV’s and monitors use a gamma curve based on REC-709, which also only has a 6 to 7 stop range. Our own visual system has a dynamic range of up to 20 stops (there is a lot of debate over exactly how big the range really is and in bright light our dynamic range drops significantly). So we can see a bigger range than most TV’s can show, so we can see bright clouds in the sky as well as deep shadows while a TV would struggle to show the same scene.

Modern camera sensors have dynamic ranges larger than 6 stops, so we can almost always capture a greater dynamic range than the average monitor can show. Now consider this carefully: If you capture a scene with a 6 stop range and then show that scene on a monitor with a 6 stop range, you will have a very true to life and accurate contrast range. You will have a great looking high contrast image. This is where having matching gammas in the camera and on the monitor comes in to play. Match the camera to the monitor and the pictures will look great, 6 stops in, 6 stops out. But, and it’s a big BUT. Real world scenes very often have a greater range than 6 or 7 stops.

A point to remember here: A TV or monitor has a limited brightness range. It can only ever display at it’s maximum brightness and best darkness. Trying to drive it harder with a bigger signal will not make it any brighter.

Feed the monitor with an image with a 6 stop range and a Rec-709 signal and the monitor will be showing it’s blackest blacks and it’s brightest whites.

But what happens if we simply feed a 6 stop monitor with an 11 stop image? Well it can’t produce a brighter picture so the brightest parts of the displayed scene are no brighter and the darker, no darker so the image you see appears to have the same brightness range but with less contrast as 11 stops are being squeezed into a 6 stop brightness range, it starts to look flat and un-interesting. The bigger the dynamic range you try to show on your 6 stop monitor, the flatter the image will look. Clearly this is undesirable for direct TV broadcasting etc. So what is normally done is to map the first 5  stops from the camera more or less directly to the first 5 stops of the display so that the all important shadows and mid-tones have natural looking contrast. Then take the brighter extended range of the camera, which may be 3 or 4 stops and map those into the remaining 1 or 2 stops of the monitor. This is a form of compression. In most cases we don’t notice it as it is only effecting highlights and our own visual system tends to concentrate on shadows and mid-tones while largely ignoring highlights. This compression is achieved using techniques such as knee compression and is one of the things that gives video it’s distinctive electronic look.

A slightly different approach to just compressing the highlights is to compress much more of the cameras output. Gamma curves like Sony’s cinegammas or hypergammas use compression that gets progressively more aggressive as you go up the exposure range. This allows even greater dynamic ranges to be captured at the expense of a slight lack of contrast in the viewed image. Taking things to the maximum we have gamma curves that use log based compression where each brighter stop is in effect compressed twice as much as the previous one. Log gamma curves like S-Log or Log-C are capable of capturing massive dynamic ranges of anywhere up to 14 stops. View these log compressed images back on your conventional TV or monitor and because even the mid range is highly compressed  they will look very low contrast and very flat indeed.

Note: Log gamma does not actually increase compression, in fact it allocates exactly the sane amount of data to every stop of exposure. However it must be remembered that for every stop you go up in exposure the brightness of the scene becomes 2 times brighter. So to record the scene accurately you should use twice as much data for every stop you add. But Log does not do this, it just adds a small amount of extra data. Thus in effect RELATIVE TO THE BRIGHTNESS RANGE OF THE SCENE the amount of data is halved for each stop you go up in exposure.

So, if you have followed this article so far you should understand that we can capture a greater dynamic range than most monitors can display, but when doing so the image looks un-interesting and flat.

So, if the images look bad, why do it? The benefits of capturing a big dynamic range are that highlights are less likely to look over exposed and  your final image contrast can be adjusted in post production. These are the reasons why it is seen as desirable to shoot flat.

But there are several catches. One is that the amount of image noise that the camera produces will limit how far you can manipulate your image in post production. The codec that you use to record your pictures may also limit how much you can manipulate your image due to compression artefacts such as banding or blocking. Another is that it is quite easy to create a camera profile or setup that produces a flat looking image, for example by artificially raising the shadows, that superficially looks like a flat, high dynamic range image, but doesn’t actually provide a greater dynamic range, all that’s happened is that shadows have been made brighter but no extra dynamic range has actually been gained.

Of course there are different degrees of flat. There is super flat log style shooting as well as intermediate flat-ish cinegamma or hypergamma shooting. But it if you are going to shoot flat it is vital that the recorded image coming from the camera will stand up to the kind of post production manipulation you wish to apply to it. This is especially important when using highly compressed codecs.

When you use a high compression codec it adds noise to the image, this is in addition to any sensor noise etc. If you create a look in camera, the additional compression noise is added after the look has been created. As the look has been set, the compression noise is not really going to change as you won’t be making big changes to the image. But if you shoot flat, when you start manipulating the image the compression noise gets pushed, shoved and stretched, this can lead to degradation of the image compared to creating the look in camera. In addition you need more data to record a bigger dynamic range, so a very flat (wide dynamic range) image may be pushing the codec very hard resulting in even more compression noise and artefacts.

So if you do want to shoot flat you need a camera with very low noise. You also need a robust codec, preferably 10 bit (10 bit has more data levels than 8 bit so contains more tonal information) and you need to ensure that the camera setup or gamma is truly capturing a greater dynamic range, otherwise your really wasting your time.

Shooting flat is a great tool in the cinematographers tool box and with the right equipment can bring great benefits in post production flexibility. Most of the modern large sensor cameras with their low noise sensors and ability to record to high end 10 bit codecs either internally or externally are excellent tools for shooting flat. But small sensor cameras with their higher noise levels do not make the best candidates for shooting flat. In many cases a better result will be obtained by creating your desired look in camera. Or at least getting close to the desired look in camera and then just tweaking and fine tuning the look in post.

As always, test your workflow. Just because so and so shoots flat with camera A, it doesn’t mean that you will get the same result with camera B. Shoot a test before committing to shooting flat on a project, especially if the camera isn’t specifically designed and set up for flat shooting. Shooting flat will not turn a poor cinematographer into a great cinematographer, in fact it may make it harder for a less experienced operator as hitting the cameras exposure sweet spot can be harder and focussing is trickier when you have a flat low contrast image.